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SYNOPSIS: 

We have introduced and  used  significant 
automation during the verification and  validation 
(V&V) of a spacecraft's autonomous  planner. 
This abstract describes the problem we faced, the 
solution we employed, and  the  applicability of 
our approach in a general V&V setting. 

PROBLEM: ,/,""fihf 
Cost, performance and functionality concerns are 
driving a trend towards use of self-sufficient 
autonomous systems in place of  human- 
controlled mechanisms. Our focus has  been  the 
verification and validation (V&V) of a 
spacecraft's autonomous planner. This planner 
generates the sequences of high-level commands 
that control the spacecraft. The planner  is  part of 
a self-sufficient autonomous system that  will 
operate a spacecraft over an extended period, 
without human intervention or oversight. Hence, 
V&V of the planner is crucial. 

The planner can exhibit a much wider  range  of 
behaviors that the command sequence 
mechanisms of more traditional spacecraft 
designs. Furthermore, it  must  respond correctly to 
a wide range of circumstances. Together, these 
raise some new challenges for V&V. 

As for any complex piece of software, a major 
focus of V&V revolves around  thorough  testing. 
The new V&V challenges manifest  themselves 
during testing as  the following combination of 
characteristics: 
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The planner's output (plans) are detailed and 
voluminous,  ranging from 1,000 to 5,000 
lines long. 

Each plan  must satisfy all of the flight rules 
that characterize correct operation of the 
spacecraft. There are over 200 such flight 
rules. 

The information  pertinent to deciding 
whether  or  not a plan passes a flight rule is 
dispersed throughout  the plan. 

The  thorough testing of the planner yields 
thousands of such plans, spanning the wide 
range of circumstances in  which the planner 
is expected  to operate. 

a consequence, manual inspection of more 
than a small-fragment of plans generated  in  the 
course of testing is impractical. 

SOLUTION: 

Our  approach  has  been to automate the checking 
of plans. The automated system checks each plan 
for adherence to all of the flight rules input to  the 
planner. This verifies that the planner is  not 
generating  hazardous command sequences. The 
automated system also performs some  validation 
checks. These arise from a gap between  the 
"natural" form of a flight rule, and the  way  in 
which it must  be  re-encoded so as to be expressed 
to the  planner.  The  automated system checks a 
direct  encoding of the "natural" statement of  the 
flight rule, thus helping validate that the planner 
and its inputs are accomplishing the desired 
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behavior. 

We use a database as  the 
underlying reasoning 
engine of our system to 
automatically check 
plans. To perform a 
series of checks of a plan, 
we  load the plan as data 
into the database, having 
previously created a 
database schema for the 
kinds of information held 
in plans. We express the 
flight rules as database 
queries. The database 
query evaluator is used to 
automatically evaluate 
those queries against the 
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Figure 1 - Architecture  for flight-rule verification of planner and outputs 
Planner inputs 

data. Query results are organized into those  that 
correspond to passing a test, which  we  report as 
confirmations, and  those  that  correspond to 
failing a test, which  we report as  anomalies. 

The net result is that we can quickly and 
thoroughly check each plan. The automated 
checking code takes less than  five  minutes  (on a 
Sun ULTRA Sparc) to perform each of several 
hundred checks of a large (5,000 line) plan  and 
generate a report of the results. Plan  generation is 
a search-intensive activity, and a planner  is a 
complex piece of software precisely  because of 
the  need to perform this search in  an effective 
and efficient manner. Conversely, once a plan 
has  been generated, checking properties of that 
plan is relatively straightforward. 

Because the flight rules themselves are numerous 
and detailed, and evolve over the course of 
software development, we  have  taken  the 
automation one step further. We generate the 
verification part  of  the plan-checking code from 
the flight rules themselves, in  the  same form in 
which they are input to the planner.  Using this 
capability, we are able to automatically 
regenerate the flight-rule checking code, 
whenever the set of flight rules input to the 
planner evolves. The architecture of this system 
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is shown  in  Figure 1, above. 

APPLICABILITY: 
Our  approach  has  been developed for, and 
applied  to, V&V of a spacecraft's autonomous 
planner.  However, we believe the approach has 
much  wider applicability than this one project. 
The characteristics that identify when this 
approach is worthwhile  and viable are as follows: 

Worthwhile: The  development  of automated test 
checking code, rather  than relying upon  manually 
conducted checks, is  warranted when: 

0 There are voluminous amounts of data to 
check, either because each test run yields lots 
of data, or there are numerous  test runs, or 
both. 

0 The checking  of a test  run is complex, either 
because there are many checks to perfonn, or 
the  checks themselves are hard to perform, or 
both. 

These conditions render  manual checking 
unsatisfactory. 

Viable: The style of automated checking we 
developed requires the following conditions to 
hold: 

0 The data to check is self-contained. That is, 



there is no  need for human interaction to 
determine whether or not a check  has  been 
met. (In our planner task, each plan  is a self- 
contained object from which  it  can  be 
determined whether or not  each flight rule 
holds.) 

The data to check is in a machine- 
manipulable form. That is, it is feasible to 
develop automated checking that  will  work 
directly off the form of data available, 
without human intervention. (In our planner 
task, plans  have exactly this characteristic, 
since they are intended for consumption  by 
the spacecraft's automatic executive.) 

Checking is easier than generation. That is, 
the code to check that a test run satisfies the 
desired conditions is simpler than  the  code 
that generates that test data. 

This has two positive consequences: 

1. The development of the  automated  test 
checking code will  be a much lesser effort 
than the development of the  system  under 
test. 

2. The test checking code will  run faster 
than the system under  test (meaning it can 
easily keep up with  the  test  data 
generated, and provide quick  feedback to 
the test personnel). 

Both of these consequences were exhibited in 
our effort. The development of the  planner 
took years, while the  development of the  plan 
checker months. For  plans  in  the  range of 
1,000 to 5,000 lines long,  the  planner  takes 3 
to 10 minutes to yield  the plan, while  the  plan 
checking code takes 30 seconds to 4 minutes 
to perform its checks of a plan. 

0 the  set of rules evolves over time 

flight rules are expressed in a machine- 
manipulable format (constraints input to the 
planner) 

the  language  of those rules (planner constraint 
language) is carefully proscribed so as to 
render  plan  generation feasible; the 
expression of those rules as checks can 
employ an extensible, general purpose 
language. 

In our system, generation of the flight-rule 
checking code takes  under 10 minutes and  is 
completely automatic. 

FURTHER  OBSERVATIONS 

Our  problem  and solution exhibit two further 
characteristics of general importance. 

The  value of redundancy and rationale: Each 
plan  generated  by  the spacecraft's planner 
contains  both a sequence of activities, and 
justifications for those activities. These 
justifications related each activity to the flight 
rules  that  were  taken into account in planning that 
activity. Viewed solely as a command sequence, 
the  presence of these justifications in the plan is 
redundant. However, these justifications serve 
two  very  useful roles for V&V purposes: 

0 they  provide rationale for why the planner 
arrived  at a plan. This rationale can be 
checked to ensure that  the  planner is not  only 
arriving at  the "right" solution (namely, a plan 
that  adheres to all  the flight rules), but  is 
doing so for the "right" reasons. This gives 
the  test  team confidence to extrapolate the 
correct operation of the planner to a wide 
range of circumstances. 

Our automatic generation of flight-rule checking 
code reflects the same characteristics of an 
activity that is worthwhile and viable to 
automate: 

they  provide redundancy that contributes to 
our confidence in  the checking code itself. 
Our  test checking code independently 
performs  the following three kinds  of checks: 

0 we  have hundreds of flight rules  to check 

0 individual rules can  be quite complex 

1. that  the activities of the plan adhere to all 
the flight rules, 

2. that  there  is a justification recorded with 
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each activity in the plan for every flight 
rule that the checker finds is applicable to 
that activity, and 

3. that every justification recorded in the 
plan can be traced back to a flight rule. 

This makes it unlikely that the checking code 
has a "blind spot" that happens to overlook a 
fault in  a plan. 

The automated test checking code we 
automatically generate from planner flight rules 
checks this rationale. 

Opportunities for validation: Verification was 
the original focus of our plan checker generation 
effort. By thorough checking of the planner's 
outputs (plans) against the flight rules given as 
input to the planner, we gained confidence that 
the internal operation of planner was correct. 
However, the effort also yielded significant 
opportunities for validation. 

Validation opportunities arose from  a gap 
between the most "natural" statement of a flight 
rule, and the form in which it must  be re-encoded 
so as to be expressed to the planner. The planner 
constraint language is carefully proscribed so as 
tc I render plan generation feasible. On occasion, 

a flight rule cannot be expressed directly in this 
limited language. Instead, it must be (manually) 
subdivided into several separate rules that in 
conjunction will achieve the requisite condition, 
and that individually can be expressed in the 
constraint language. Our language for expressing 
checks is more general purpose than the planner 
constraint language. This means that it is possible 
to (manually) encode an automatic check 
corresponding directly to the original flight rule. 
By following this process, we are able to validate 
that the planner, and the encodings of flight rules 
given to it,  do in fact achieve the original intent. 

Note that there is  a manual step to this validation 
- we must manually encode the original flight 
rules (expressed in natural language) as checking 
code. The checking code then runs automatically. 
However this manual step can take advantage of 
the framework established by the verification 
architecture and code. 

In  more general terms, we see that verification 
can be extended into the realm of validation when 
the verification language is more general than the 
language of the system being verified 
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Figure 2 - Extension  to  the  architecture  to  do  validation 
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